GLASS AND CERAMICS – SETTING THE SCENE

Finance for Innovation: Towards the ETS Innovation Fund
Workshop 3

Andrea Herbst, Tobias Fleiter, Wolfgang Eichhammer
Fraunhofer Institute for Systems and Innovation Research

Brussels, 6th April 2017
CO2 emissions in glass and ceramics (EU28)

CO2 verified emissions:
- Glass: slight decrease
- Ceramics: recovery since economic crisis
- EEA 2015 emissions:
 - Glass: 18 Mt
 - Ceramics: 16 Mt

Production value
- Similar trends in both industries
- Does not reflect CO2 increase in 2013 in ceramics

Sources
- CO2: EU ETS - data viewer
- Production value: Eurostat
Fuel (EC) mix in glass and ceramics

- Electricity and gas main energy carriers in glass and ceramics
- Natural gas inputs substitute CO2-intensive fossil fuels (like coal, oil and petcoke)
- Low but increasing share of biomass

Energy carrier mix used in the glass and ceramics industry in Germany, 1995-2014

Source: TBE, PwC analysis
Ambition needed – the EU low-carbon roadmap 2011

Figure 1: EU GHG emissions towards an 80% domestic reduction (100% =1990)

- Industry (CO2): -83 to -87%
- Ambition from Paris? „Well below 2°C“

Source: COM
Technologies in development/discussion

British Glass (2014): Roadmap
- Fuel switch (low carbon fuels, electricity)
- Furnace improvements
- Oxygen-fuel combustion
- Additional waste heat recovery
- CCS
- Batch pelletisation, Batch reformulation
- Material efficiency
- Recycling, ...

CeramUnie (2013): Roadmap
- Electrification of kiln
- On-site syngas biogas
- Clay/raw material preconditioning
- New kiln design
- Heat exchanger in kiln stack
- Low-temperature heat recovery from kiln exhaust
- CCS
- Material efficiency
- Recycling, ...
Clustering mitigation options

<table>
<thead>
<tr>
<th>Clusters of mitigation options</th>
<th>Technology Readiness Levels TRL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materials industry</td>
<td></td>
</tr>
<tr>
<td>Integrated process improvement</td>
<td></td>
</tr>
<tr>
<td>- Energy Efficiency (modernization and replacement)</td>
<td></td>
</tr>
<tr>
<td>- Reduction in process-related emissions</td>
<td></td>
</tr>
<tr>
<td>Fuel switch</td>
<td></td>
</tr>
<tr>
<td>- towards renewable energy sources (e.g. based on hydrogen)</td>
<td></td>
</tr>
<tr>
<td>- towards decarbonized electricity (indirect emissions)</td>
<td></td>
</tr>
<tr>
<td>End-of-pipe</td>
<td></td>
</tr>
<tr>
<td>(Carbon Capture and Storage CCS/ Carbon Capture and Use CCU)</td>
<td></td>
</tr>
<tr>
<td>downstream</td>
<td></td>
</tr>
<tr>
<td>Recycling and re-use</td>
<td></td>
</tr>
<tr>
<td>(innovative recycling processes)</td>
<td></td>
</tr>
<tr>
<td>Material efficiency</td>
<td></td>
</tr>
<tr>
<td>(in production and downstream)</td>
<td></td>
</tr>
<tr>
<td>Material substitution</td>
<td></td>
</tr>
<tr>
<td>(downstream)</td>
<td></td>
</tr>
</tbody>
</table>
OPTIMELT

Advanced heat recovery for oxy-fuel fired glass furnaces

Joaquín de Diego Rincón
Praxair Euroholding, S. L

Brussels, 6th April
OPTIMELT (Praxair & Libbey)

- High efficiency non-catalytic reforming process
- Recycled flue gas with CO2 and water vapor is used for CH4 reforming
- Regenerative system allows high operating temperatures/reforming rate
- Regenerators roughly 1/3 the size of air-fired regenerators

Endothermic reforming reactions

\[
\begin{align*}
\text{CH}_4 + \text{H}_2\text{O} &\rightarrow \text{CO} + 3\text{H}_2 & 2060 \text{ kcal/Nm}^3 & \text{CH}_4 \ (215 \text{ Btu/scf-CH}_4) \\
\text{CH}_4 + \text{CO}_2 &\rightarrow 2\text{CO} + 2\text{H}_2 & 2630 \text{ kcal/Nm}^3 & \text{CH}_4 \ (275 \text{ Btu/scf-CH}_4)
\end{align*}
\]

Source: Praxair
OPTIMELT (Praxair & Libbey)

Praxair’s OPTIMELT™:
- Reduces energy consumption (~20% vs oxy-fuel, ~30% vs. air-regenerative)
- Reduces CO2 emissions
- Reduces air pollutants to the level of oxy-fuel performance (Nox, CO, etc.)
- Reduces flue gas volume and enables smaller air pollution control

Libbey OPTIMELT™ startup in 2017
- Expected reduction in energy consumption and CO2 emissions of 45 to 60%
- Project partially funded by European Union with LIFE grant (LIFE 15 CCM/NL/000121)

Source: Praxair, Libbey
OPTIMELT (Praxair & Libbey)

OPTIMELT™ Technology Development Path

- Patent
- 2011-2012
 Bench Scale
- 2012-2013
 Pilot Scale Tests (10 TPD)
- 2014-2016
 PAVISA Commercial Demonstration
 (50 TPD)
- 2016-2017
 LIBBEY Tableware furnace
- 2017-2018
 Container Furnace (>200 TPD)
 Engineering Phase
- -> next step: commercial application

Source: Praxair, Libbey
Thank you for your attention!

OPTIMELT:
Joaquín de Diego Rincón
Praxair Euroholding, S. L.
Orense 11 9ª planta
28020 Madrid - Spain
Joaquin_de_Diego@praxair.com

Andrea Herbst
Fraunhofer ISI
Breslauer Straße 48
76139 Karlsruhe – Germany
andrea.herbst@isi.fraunhofer.de