Design and Implementation of OPTIMELT™ Heat Recovery for an Oxy-Fuel Furnace at Libbey Leerdam

M. van Valburg and E. Sperry
Libbey Holland, Leerdam, The Netherlands and Libbey Inc., Toledo, OH, USA

S. Laux, R. Bell, A. Francis and H. Kobayashi
Praxair Inc., Danbury, CT, USA
Reforming of natural gas in regenerators recovers twice as much heat from the flue gas of oxy-fuel furnaces as just preheating oxygen/fuel

- Regenerative system takes advantage of high operating temperatures
- High efficiency non-catalytic reforming process
- Recycled flue gas with CO$_2$ and water vapor is used for endothermic CH$_4$ reforming to CO and Hydrogen (syngas)

Hot syngas is burned with oxygen in the furnace
OPTIMELT™ TCR

- **OPTIMELT advantages**
 - Reduced energy consumption (~20% vs oxy-fuel)
 - Reduced CO₂ emissions (~30% vs air regenerative)
 - Reduced air pollutants to the level of oxy-fuel performance (NOx, SOx, CO, etc.)

- Development program started 2011

- **Commercial Projects**
 - 50 t/d demonstration at Pavisa in Mexico operating since 2014
 - Implementation and startup at Libbey Leerdam in 2017
Update on OPTIMELT Operation at Pavisa in Mexico
Status Pavisa Furnace 13

- 50 t/d oxy-fuel container furnace retrofitted with OPTIMELET system in 2014
- Operation
 - OPTIMELET TCR in commercial operation since September 2014
 - System owned and operated by Pavisa
- Results
 - Glass pull rate and quality continue to be within Pavisa requirements
 - Emissions in the range of emissions for Low NOx glass oxy-fuel burners
 - Energy reduction 15 to 18% - in line with expectations for 50tpd furnace
 - No fundamental TCR technology issues identified
- Refractory testing with samples in regenerators continues

Pavisa continues to support ongoing OPTIMELET development
Regenerator and Checker Performance

- Fused-cast alumina and spinel checkers in very good condition after 3 years
 - Passages free of deposits
 - No signs of corrosion
 - Light deposits at bottom, easy to clean
 - No apparent damage from September earthquake
- Magnesia checkers test after 8 month exposure shows positive results
- Change of refractory in port necks was necessary
 - Wrong initial choice of high alumina castable resulted in nepheline spalling
 - Refractory changed to AZS in March 2017
 - Observed corrosion patterns typical for glass furnace conditions
 - SiO$_2$ reduction by H$_2$/CO/C in syngas was not observed
- Lower regenerator walls and rider arches in very good condition
- Dampers, ducts and fan deposits
 - Cleaning no problem, no operational impact
Pavisa Regenerator Condition

- Condition of Left Regenerator after cleaning of spalled material
- Checker channels free from deposits

- July 2015 (9 months)
- July 2016 (21 months)
- March 2017 (28 months)
Design and Implementation of OPTIMELT TCR at Libbey Leerdam
Leerdam L1 Project

- **Libbey’s Goals**
 - Best-in-class furnace technology to reduce energy consumption and lower emissions
 - Support of Libbey’s sustainability strategy and alignment with European carbon reduction roadmap
 - Positioning Leerdam location for the sustainable production of premium tableware products

- **Project Scope**
 - Replacement of two recuperative furnaces with a single oxy-fuel furnace
 - New feeder system to connect to existing glass machines
 - Two oxy-fuel burner skids with total 6 OPTIFIRE JL-Burners adapted for operation with TCR
 - OPTIMELT TCR system addition
 - On-site VPSA oxygen supply with liquid oxygen backup
 - Associated safety, equipment and control upgrades
OPTIMELT Implementation funded by EU (LIFE15 CCM-NL-000121)
- Project supports EU’s goals to significantly reduce CO/NOx and greenhouse gas emissions

LIFE Funding

- Libbey Leerdam and Praxair were jointly granted 2.3 million € after decision to install OPTIMELT had been made
- 3-year EU LIFE grant partially funds OPTIMELT system extension to oxy-fuel furnace
 - Engineering, installation and startup
 - Knowledge dissemination

Reductions are relative to performance of previous recuperative furnace.
Timeline LIFE Project

- Oxy-fuel furnace in operation since May 2017
- OPTIMEILT TCR started up at the beginning of November 2017
- Frequent project updates at http://www.lifeoptimelt.com

Boost the regional economy with 5.0 millions

First glass production startup

Improvement of the knowledge and skills of Libbey’s team

45-60% less of CO₂/year

25-35% less of NOₓ/year

Most energy efficient large scale glass furnace of its kind worldwide

Oxy-fuel furnace rebuild

OPTIMEILT™ implementation

First reductions in energy consumption and air emissions

45-60% energy less used for the process

2017

2018

2019
- Side-fired oxy-fuel furnace with two end-port TCR
- Cycle time typically 20 min
- Oxy-fuel system always on stand-by
OPTIMELT Furnace L1

- Oxy-Fuel Port Neck
- OPTIMELT Port Necks
- Right/Left Regenerator
- OPTIMELT Flue Gas Skid
- Downcomer for Flue Gas
- 3 OPTIFIRE JL Oxy-fuel Burners
TCR Flue Gas System

- Four switching valves
- High temperature flue gas recirculation fan
- Flue gas exhaust into downcomer for further air dilution
- Piping made from stainless steel to reduce corrosion
TCR is automatically controlled by a PLC through 8 operating steps
Technology Risks Addressed

- Mixture between flue gas recirculation and natural gas could ignite when heated in hot checker pack, **IF there is enough oxygen**
 - The mixture of natural gas and flue gas is too “fuel rich” to combust
 - Oxygen concentration in flue gas is controlled with large safety margin
 - Automated process control, automatic SIL-rated safety shutdowns

- Syngas contains up to 20% CO, which is toxic
 - Complete CO burnout with oxygen in furnace
 - Regenerators enclosed in steel
 - Atmospheric monitoring system in key building areas

- Safety approach is a large part of process design and development work
- Process Hazards Analysis for L1 installation to assess and mitigate risks
- Project Safety Execution Plan to manage safe installation and startup

Comprehensive Safety Review as Part of Project Execution
Installation

LIFE15 CCM/NL/000121 - LIFE OPTIMELT
Oxy-Fuel Firing Mode

Oxy-fuel flames nearly invisible in IR camera image.
OPTIMELT Start-Up continuing with flame optimization
Project Learning Experiences

- Result of great collaboration with multiple parties, at the end it is a result of committed people working together as one team!

- Training the operations team is a must!
- Thorough and in-time 3D modelling of the total configuration is key to achieve an optimized work environment. This is more critical with more equipment to be arranged!
- Review to be done on the construction and building process of the regenerators
Installation

Regenerator construction

More equipment to position

Praxair
OPTIFIRE™
JL-Burners
Thank You for Your Attention!

LIFE15 CCM/NL/000121 – LIFE OPTIMELT

The support of this project by the European Union is gratefully acknowledged.

Contact for Libbey: Marco van Valburg – mvalbu@libbey.com
Contact for Praxair: Stefan Laux – stefan_laux@praxair.com